Raman and Infrared Spectra of Binuclear Platinum(II) and Platinum(III) Octaphosphite Complexes. A

Characterization of the Intermetallic Bonding

Paul Stein, ${ }^{\text {11a }}$ Mark K. Dickson, ${ }^{1 \mathrm{~b}}$ and D. Max Roundhill*1c
Contribution from the Department of Chemistry, Washington State University, Pullman, Washington 99164. Received September 7, 1982

Abstract

Raman and IR spectra of $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathrm{pop}=\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}{ }^{2-}\right)$ complexes were recorded and the Raman active $\mathrm{Pt}(\mathrm{III})-\mathrm{Pt}(\mathrm{III})$ stretching frequencies observed at 158,134 , and $110 \mathrm{~cm}^{-1}$. Symmetric $\mathrm{Pt}-\mathrm{X}$ stretching frequencies were assigned at 304,224 , and $194 \mathrm{~cm}^{-1}$, respectively, while the asymmetric $\mathrm{Pt}-\mathrm{X}$ frequencies occurred at 295,195 , and 118 cm^{-1}. The Raman spectrum of $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{-i}$ in aqueous solution was recorded and the $\mathrm{Pt}(\mathrm{II})-\mathrm{Pt}(\mathrm{II})$ stretching frequency was detected at $116 \mathrm{~cm}^{-1}$. A vibrational analysis, utilizing the $\mathrm{X}-\mathrm{Pt}-\mathrm{Pt}-\mathrm{X}$ unit, was performed. This model could reproduce the Raman active vibrations ($\pm 2 \mathrm{~cm}^{-1}$) and was sufficient to indicate a strong $\mathrm{Pt}(\mathrm{III})-\mathrm{Pt}(\mathrm{III})$ single bond and a weak $\mathrm{Pt}(\mathrm{II})-\mathrm{Pt}(\mathrm{II})$ bond. The Raman spectrum of $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ showed $\nu(\mathrm{Pt}-\mathrm{Pt}) 156 \mathrm{~cm}^{-1}, \nu(\mathrm{Pt}-\mathrm{I}) 172 \mathrm{~cm}^{-1}$, and $\nu(\mathrm{Pt}-\mathrm{C}) 489 \mathrm{~cm}^{-1}$, the latter frequency shifting to $475 \mathrm{~cm}^{-1}$ with a ${ }^{13} \mathrm{CH}_{3}$ isotope. A normal coordinate calculation including the bridging POP atoms gave good reproductions of the $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X}$ frequencies and predicted an asymmetric ring mode below $200 \mathrm{~cm}^{-1}$ that couples with the asymmetric $\mathrm{Pt}-\mathrm{X}$ stretch. This ring transition was identified in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{I}_{2}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ complexes at 178 and $172 \mathrm{~cm}^{-1}$. The $\nu(\mathrm{Pt}-\mathrm{Pt})$ signal at $116 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ was found to involve a significant contribution of the symmetric ring bending. The $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}{ }^{2-}$ ligand vibrations were assigned in the IR spectra and the symmetric POP stretch showed a $35-\mathrm{cm}^{-1}$ upshift in the $\mathrm{Pt}(\mathrm{III})$ complexes. By use of Badger's rule, an apparent 4% reduction in platinum-platinum separation is calculated for the excited state in $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]$.

Although few platinum(III) compounds are known, recent reports of binuclear $\mathrm{Pt}(\mathrm{III})$ complexes with $\mathrm{Pt}-\mathrm{Pt}$ distances between 2.47 and $2.695 \AA^{2}{ }^{3}$ have attracted attention. We have found that binuclear platinum(III) complexes of $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) can be readily prepared by oxidative addition reaction (1) with the binuclear $\mathrm{Pt}(\mathrm{II})$ octaphosphite salt $\left[\mathrm{Pt}_{2}{ }^{-}\right.$

$$
\begin{equation*}
\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}+\mathrm{X}_{2} \rightarrow\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{X}_{2}\right]^{4-} \tag{1}
\end{equation*}
$$

(pop) $\left.)_{4}\right]^{4-}$ (pop $=\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}{ }^{2-}$). ${ }^{2}$ Simple MO theory ${ }^{4}$ of binuclear complexes of d^{7} and d^{8} metal ions predicts that these reactions may be facilitated by the formation of a $\mathrm{Pt}-\mathrm{Pt}$ single bond in the product complex. The binuclear d^{8} ion, $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4}$, with orbitals $\left(\mathrm{d}_{\sigma}\right)^{2}\left(\mathrm{~d}_{\sigma}\right)^{2}$ has a formal bond order of zero, while a single bond is given to the binuclear d^{7} ions, $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4}$, with a filled ($\mathrm{d} \sigma^{2}$) orbital. The $\mathrm{Pt}-\mathrm{Pt}$ distance in $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{Cl}_{2}\right]$ is 2.695 (1) \AA which is considerably shorter than that of 2.925 (1) \AA in $\mathrm{K}_{4}{ }^{-}$ $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} .{ }^{5} \quad$ Magnetic measurements indicate these complexes are diamagnetic. The ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ NMR spectra show these complexes are stable in solution although second-order splittings of the resonances complicate the evaluation of a quantitative description of the $\mathrm{Pt}-\mathrm{Pt}$ interactions.

Raman spectral measurements in aqueous solution have been reported for the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4}$ ions, giving $\nu(\mathrm{Pt}-\mathrm{Pt})$ at 158,134 , and $110 \mathrm{~cm}^{-1}$, and for $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4}$ at $116 \mathrm{~cm}^{-1} .^{6}$ While $\nu(\mathrm{Pt}-\mathrm{Pt})$ provides a sensitive monitor of the $\mathrm{Pt}-\mathrm{Pt}$ interaction, the influence of the ligands obscures a direct correlation to $\mathrm{Pt}-\mathrm{Pt}$ bonding. For
(1) (a) Present address: Department of Chemistry, Duquesne University, Pittsburgh, PA 15282. (b) Shell Development Co. Houston. TX 77001. (c) Department of Chemistry, Tulane University, New Orleans, LA 70118.
(2) Che, C. M.; Schaefer, W. P.; Gray, H. B.; Dickson, M. K.; Stein, P.; Roundhill, D. M. J. Am. Chem. Soc. 1982, IO4, 4253-4255.
(3) Muraveiskaya, G. S.; Orlova, V. S.; Evstaf'eva, O. N. Russ. J. Inorg. Chem. 1974, 19, 1030-1035. Orlova, V. S.; Muraveiskaya, G. S.; Evstafeva, O. N. Ibid. 1975, 20, 1340-1346. Muraveiskaya, G. S.; Kukina, G. A.; Orlova, V. S.; Evstaf'eva, O. N.; Porai-Koshits, M. A. Dokl. Akad. Nauk SSSR 1976, 226, 596-599. Cotton, F. A.; Falvello, L. R.; Han, S. Inorg. Chem. 1982, 2l, 1709-1710. Cotton, F. A.; Falvello, L. R. han, S. Inorg. Chem. 1982, 2l, 2889-2891. Hollis, L. S.; Lippard, S. J. J. Am. Chem. Soc. 1981, 103, 6761-6763.
(4) Mann, K. R.; Lewis, N. S.; Williams, R. M.; Gray, H. B.; Gordon, J. G. Inorg. Chem. 1978, 17, 828-834.
(5) Filomena Dos Remedios Pinto, M. A.; Sadler, P. J.; Neidle, S.; Sanderson, M. R.; Subbiah, A. J. Chem. Soc., Chem. Commun. 1980, 13-15. (6) Stein, P. In "Raman Spectroscopy; Linear and Nonlinear"; Lascombe, J., Huong, P. V., Eds.; Wiley Heyden Publishers, 1982; pp 651-652.
the purpose of estimating the bond strengths in both the binuclear platinum(II) and platinum(III) complexes, we have collected the Raman and IR spectral data of $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-},\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}(\mathrm{X}$ $=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$. Application of a normal coordinate analysis delineates the ligand contributions to the $\mathrm{Pt}-\mathrm{Pt}$ stretching modes. A characterization of binuclear platinum(II) and platinum(III) bond strengths will significantly improve our understanding of the interactions in these molecules and possibly lead to better predictions of their chemistries.

The electronic spectral properties of these complexes have been investigated. Intense absorptions for $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}(367 \mathrm{~nm})^{7}$ and $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{X}_{2}\right]^{4-}(310-460 \mathrm{~nm})$ have been assigned to $5 \mathrm{~d}_{2}\left(\sigma^{*}\right) \rightarrow$ $6 \mathrm{p}_{2}(\sigma)^{8,9}$ and $5 \mathrm{~d}_{z^{2}}(\sigma) \rightarrow 5 \mathrm{~d}_{z^{2}}\left(\sigma^{*}\right)^{2}$ transitions. Electronically similar binuclear rhodium(I) and rhodium(II) ions $\left[\mathrm{Rh}_{2} \mathrm{~b}_{4}\right]^{2-}$ and $\left[\mathrm{Rh}_{2} \mathrm{~b}_{4} \mathrm{X}_{2}\right]^{2+}(\mathrm{b}=1,3 \text {-diisocyanopropane })^{10,11}$ show comparative absorptions. Much interest has been afforded to these d^{8} binuclear platinum(II) and rhodium(I) complexes which show efficient phosphorescence with vibrational progressions at 139 and $147 \mathrm{~cm}^{-1}$. These vibrations have been assigned to the metal-metal stretching frequencies in the excited state and they occur with an increase in the metal-metal bond strength over that of the ground state. The $\mathrm{Rh}-\mathrm{Rh}$ stretching frequencies, $79 \mathrm{~cm}^{-1}$ for the ground state and $144 \mathrm{~cm}^{-1}$ for the triplet level, have been observed for the binuclear rhodium(I) complex by Raman spectroscopy. ${ }^{12}$

We now report our vibrational analysis for the binuclear platinum complexes and suggest that it may serve as a point of reference in analyzing similar face-centered binuclear or oligomeric structures. ${ }^{13}$

Experimental Section

Complexes $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mid \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})\right.$, and $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right]$ were prepared by published procedures. ${ }^{2.5,7}$ The compound $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{13} \mathrm{CH}_{3} \mathrm{I}\right]$ was prepared in a similar manner ${ }^{2}$ except

[^0]Table I. Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ of $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{X}_{2}\right]^{4-}$

$\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$	$\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Cl}_{2}\right]^{4-}$	$\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Br}_{2}\right]^{4-}$	$\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{I}_{2}\right]^{4-}$	$\left.\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right)\right]^{4-}$	assignments
IR					
1329	1270	1270	1270	1270	POH bend
1085	1060	1092	1090	1083	$\mathrm{PO}_{\text {term }}$ str
910	940	930	920	915	$\mathrm{PO}_{\text {term }}$ str
695	730	730	728	725	POP str
520	516	520	515	520	PO_{2} bend
442	455	456	452	453,475	PO_{2} bend
360	359	357	357	356	ring bending
335	335	336	335	336	$\mathrm{Pt}-\mathrm{P}$ str
308	320	318	318	320	ring bending
	295	195	$118(178){ }^{d}$	$115(172)^{d}$	$\mathrm{Pt}-\mathrm{X} \text { str }$
278	275	283	281	287	ring bending
241	237	237	237	239	ring bending
Raman					
	304	224	195	172	$\mathrm{Pt}-\mathrm{X} \mathrm{str}{ }^{\text {c }}$
232	235		b	b	ring bending
116	158	134	$110^{\text {a }}$	156	$\mathrm{Pt}-\mathrm{Pt}$ str
	112	95	b	b	$\mathrm{Pt}-\mathrm{Pt}-\mathrm{X}$ bending

${ }^{a}$ Overtones are shown in Figure 3 at $218 \mathrm{~cm}^{-1}$ and $326 \mathrm{~cm}^{-1}$. ${ }^{b}$ Not observed. ${ }^{c} \mathrm{Pt}_{\mathrm{t}} \mathrm{CH}_{3}$ in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ is observed at $489 \mathrm{~cm}^{-1}$ as shown in Figure 5. ${ }^{d}$ Assigned to ring bending but contain significant $\mathrm{Pt}-\mathrm{I}$ str contribution (see Table II).

Figure 1. Schematic drawing of the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ structure. The $\left[\mathrm{Pt}_{2}-\right.$ (pop) $\left.)_{2} \mathrm{X}_{2}\right]^{4-}$ structures have, in addition, $\mathrm{Pt}-\mathrm{X}$ units.
that ${ }^{13} \mathrm{CH}_{3} \mathrm{I}$ (90 atom $\%{ }^{13} \mathrm{CH}_{3} \mathrm{I}$ supplied by MSD Isotopes) was used. Infrared spectra were obtained as Vaseline mull films on a polyethylene plate in an evacuated sample chamber of a Perkin-Elmer FIS3 spectrometer. Deuteration of $\left.\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]$ was achieved by carrying out the synthesis in $\mathrm{D}_{2} \mathrm{O}$ solvent. Samples for Raman spectroscopy were prepared as saturated aqueous solutions. Raman spectra of the binuclear Pt (III) complexes were obtained with an argon ion 554 Control laser. A 171 Spectrophysics krypton ion laser was used for the binuclear Pt (II) sample.

Results and Discussion

1. Vibrational Symmetries. In analyzing the present vibrational data, it is useful to begin with the structure in Figure 1 which gives the atomic arrangement for the ion $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{+}$and shows fourfold symmetry about the $\mathrm{Pt}-\mathrm{Pt}$ axis. Twenty seven normal modes are classified in the $D_{4 h}$ point group:

$$
\begin{aligned}
\Gamma=4 \mathrm{~A}_{1 \mathrm{~g}}+1 \mathrm{~A}_{2 \mathrm{~g}}+3 \mathrm{~B}_{1 \mathrm{~g}}+2 \mathrm{~B}_{2 \mathrm{~g}}+4 \mathrm{E}_{\mathrm{g}}+ & 1 \mathrm{~A}_{1 \mathrm{l}}+3 \mathrm{~A}_{2 \mathrm{u}}+ \\
& 1 \mathrm{~B}_{1 u}+3 \mathrm{~B}_{2 \mathrm{u}}+5 \mathrm{E}_{u}
\end{aligned}
$$

The $\mathrm{A}_{2 u}$ and E_{u} type vibrations involve both $\mathrm{P}-\mathrm{O}$ and $\mathrm{Pt}-\mathrm{P}$ stretches and ring bending modes and are infrared active. Raman active vibrations involving platinum motions transform with $\mathrm{A}_{1 \mathrm{~g}}$ or E_{g} symmetry. The $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{X}_{2}\right]^{4-}$ ions give additional vibrations due to $\mathrm{Pt}-\mathrm{X}$ linkages as classified:

$$
\Gamma=1 \mathrm{~A}_{1 \mathrm{~g}}+1 \mathrm{E}_{\mathrm{g}}+1 \mathrm{~A}_{2 u}+1 \mathrm{E}_{u}
$$

Despite the $\operatorname{PtPOPPt}$ units being puckered and the $\mathrm{PO}_{2} \mathrm{H}$ groups reducing the symmetry from $D_{4 h}$, Figure 1 is useful in analyzing the infrared and Raman active vibrations. A list of number and descriptions of the expected modes are given as follows:

$\mathbf{A}_{\mathbf{1} \mathbf{g}}$	$\mathrm{E}_{\mathbf{g}}$	$\mathrm{A}_{2 \mathbf{u}}$	$\mathrm{E}_{\mathbf{u}}$	description 1
1	1	1	P-O-P stretch	
1	1	1	1	Pt-P stretch
1	2	1	3	ring bending
1	0	0	0	$\mathrm{Pt}-\mathrm{Pt}$ stretch
1	0	1	0	$\mathrm{Pt}-\mathrm{X}$ stretch
0	1	0	1	$\mathrm{Pt}-\mathrm{X}$ bend

As seen, the $\mathrm{Pt}-\mathrm{Pt}$ stretching coordinate occurs only in $\mathrm{A}_{1 g}$ symmetry and $\nu(\mathrm{Pt}-\mathrm{Pt})$ is expected to be a mixture of this coordinate,
the symmetric $\mathrm{Pt}-\mathrm{X}$, and bridging ligand coordinates. The $\mathrm{A}_{1 \mathrm{~g}}$ and $\mathrm{A}_{2 u}$ type vibrations can couple in $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ where the symmetry reduces to C_{40}.
2. Bridging Ligand Vibrations. The IR spectra of the ions [Pt_{2} (pop) $\left.)_{4}\right]^{4-}$ and $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{X}_{2}\right]^{4-}$ are dominated by vibrational modes from the $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}{ }^{2-}$ units. Their frequencies are listed in Table I. The $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} X_{2}\right]^{4}$ complexes show nearly equivalent sets of frequencies which are interpreted as evidence for little variation of their bridging units. While a comparison between the binuclear $\mathrm{Pt}(\mathrm{III})$ and $\mathrm{Pt}(\mathrm{II})$ complexes show vibrational frequency shifts, the vibrational patterns remain the same. The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ stretching and $\mathrm{PO}_{2} \mathrm{H}$ group vibrations are expected above $400 \mathrm{~cm}^{-1}$ while the ring bending modes and the $\mathrm{Pt}-\mathrm{X}$ stretches occur below $400 \mathrm{~cm}^{-1}$.

Symmetric and asymmetric $\mathrm{P}-\mathrm{O}-\mathrm{P}$ stretches have been assigned at 670 and $915 \mathrm{~cm}^{-1}$ in pyrophosphites, ${ }^{14}$ and at $710-750$ and $910-1025 \mathrm{~cm}^{-1}$ in diphosphates. ${ }^{15}$ The asymmetric $\mathrm{P}-\mathrm{O}-\mathrm{P}$ stretch $\left(\mathrm{A}_{2 \mathrm{u}}\right)$ is obscured by the $\mathrm{PO}_{2} \mathrm{H}$ vibrations. The symmetric $\mathrm{P}-\mathrm{O}-\mathrm{P}$ stretch $\left(\mathrm{E}_{u}\right)$ is observed at $695 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4}$ and at 730 cm^{-1} in the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ complexes. Although the measured $\mathrm{P}-\mathrm{O}$ distances in $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{Cl}_{2}\right]^{4-}$ are $1.61 \pm$ $0.01 \AA,{ }^{2,5}$ a $35-\mathrm{cm}^{-1}$ shift to higher frequency is observed for the symmetric $\mathrm{P}-\mathrm{O}-\mathrm{P}$ stretch between the $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{III})$ ions. This difference can be ascribed to kinematic alterations which arise from a change in the POP bridging angles and does not indicate potential energy differences in the $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}{ }^{2-}$ bridge. A comparison of the $\left.\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left.\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{Cl}_{2}\right]$ crystal structures indicates an approximate $8-10^{\circ}$ change in the POP angle which apparently accompanies the change in $\mathrm{Pt}-\mathrm{Pt}$ distance. ${ }^{16}$ An increase in the symmetric $\mathrm{P}-\mathrm{O}-\mathrm{P}$ stretching and decrease in the asymmetric $\mathrm{P}-\mathrm{O}-\mathrm{P}$ stretching frequencies of ~ 40 cm^{-1} are predicted with this angle change.
The $\mathrm{PO}_{2} \mathrm{H}$ vibrations involve $\mathrm{P}-\mathrm{O}$ stretches, PO_{2} bends, and POH bending. The latter is identified at $1320 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ and at $1270 \mathrm{~cm}^{-1}$ in the $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{X}_{2}\right]^{4-}$ complexes, which shift to lower frequency $\left(\sim 300 \mathrm{~cm}^{-1}\right)$ in the perdeuterated complexes. The symmetric and asymmetric $\mathrm{P}-\mathrm{O}_{\text {term }}$ stretches occur at 1100

[^1]

Figure 2. Far-infrared spectra of binuclear platinum(II) and platinum(III) complexes $\left.\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right], \mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right], \mathrm{K}_{4}\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right] \cdot$ $2 \mathrm{H}_{2} \mathrm{O}$. The marked (\uparrow) signals correspond to the $\mathrm{Pt}-\mathrm{X}$ modes.
and $910 \mathrm{~cm}^{-1}$ and are characteristic of a hybridized PO_{2} unit without a well-defined $\mathrm{P}=\mathrm{=O}$ bond, which is usually observed above $1200 \mathrm{~cm}^{-1} .{ }^{17}$ Partial double-bonded $\mathrm{P}-\mathrm{O}_{\text {term }}$ units are also suggested by the X -ray data which give $\mathrm{P}-\mathrm{O}_{\text {term }}$ distances in the range $1.51-1.55 \AA^{16}$ The $\mathrm{PO}_{2} \mathrm{H}$ vibrational bands are broad and may indicate disorder in the hydrogen positions. The vibrations at ~ 525 and $450 \mathrm{~cm}^{-1}$ are compared with PO_{2} bending frequencies observed in phosphites and pyrophosphites. ${ }^{18}$ These modes are not expected to influence the $\mathrm{Pt}-\mathrm{Pt}$ stretching frequencies significantly.

Infrared assignments below $400 \mathrm{~cm}^{-1}$ are more tentative, although the $\mathrm{Pt}-\mathrm{X}$ frequencies can be confidently identified at 295 , 195 , and $118 \mathrm{~cm}^{-1}$ for $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$. We assign the $335-336-\mathrm{cm}^{-1}$ bands to the $\mathrm{Pt}-\mathrm{P}\left(\mathrm{E}_{\mathrm{u}}\right)$ stretch as compared to the range $310-360 \mathrm{~cm}^{-1}$ for complexes $\mathrm{PdX}_{2}\left(\mathrm{PMe}_{3}\right)_{2} .{ }^{19}$ The far-infrared spectra of our complexes, given in Figure 2, show intense lines at 178 and $172 \mathrm{~cm}^{-1}$ for $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{I}_{2}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}-\right.$ (pop) $\left.{ }_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ in addition to the $\mathrm{Pt}-\mathrm{I}$ stretches; these vibrations are assigned to asymmetric ($\mathrm{A}_{2 \mathrm{u}}$) ring-bending vibrations. Their intensity may be attributed to mixing with the $\mathrm{Pt}-\mathrm{I}$ motions.
3. $\mathbf{P t}-\mathbf{P t}_{\mathrm{t}}$ and $\mathbf{P t}-\mathbf{X}$ Vibrations. The Raman spectra of the $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{X}_{2}\right]^{4-}$ ions shown in Figure 3 and that of $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$ shown in Figure 4 are characterized in aqueous solution by intense signals between 110 and $158 \mathrm{~cm}^{-1}$ and are assigned to the $\mathrm{Pt}-\mathrm{Pt}$ stretching frequencies. A weaker signal in the ions $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ at 304,224 , and $194 \mathrm{~cm}^{-1}$ is due to the symmetric $\mathrm{Pt}-\mathrm{X}$ stretch. Depolarization ratios show these signals to be polarized. The $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Cl}_{2}\right]^{4}$ and $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Br}_{2}\right]^{4}$ ions have broad bands which are depolarized and are assigned to E_{g} ring bending and $\mathrm{Pt}-\mathrm{Pt}-\mathrm{X}$ bending modes. The band at $232 \mathrm{~cm}^{-1}$ in $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$ may be the corresponding $\mathrm{E}_{\mathbf{g}}$ ring mode or possibly an overtone of $\nu(\mathrm{Pt}-\mathrm{Pt})$ at $116 \mathrm{~cm}^{-1}$. Modes due to the phosphorus ligands are not observed in these spectra.

The intense $\nu(\mathrm{Pt}-\mathrm{Pt})$ signal in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{I}_{2}\right]^{4}$ is attributed to a preresonance enhancement with the $\sigma-\sigma^{*}$ excitaion at 438 nm . The relative intensity of $\nu(\mathrm{Pt}-\mathrm{Pt})$ in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{I}_{2}\right]^{4-}$ against that
(17) Bellamy, L. J.; Beecher, L. J. Chem. Soc. 1952, 475-483.
(18) Tsuboi, M. J. Am. Chem. Soc. 1957, 79, 1351-1354.
(19) Park, P. J. D.; Hendra, P. J. Spectrochim. Acta, Part A 1969, 25A, 909-916.

Figure 3. Raman spectra are shown for $\sim 2-\mathrm{mM}$ solutions of $\left[\mathrm{Pt}_{2}-\right.$ (pop) $\left.4_{4} \mathrm{X}_{2}\right]^{4-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ in $\mathrm{H}_{2} \mathrm{O}$, using $5145-\AA$ laser excitation. An arbitrary intensity scale is given with each spectrum. The relative intensities of $\nu(\mathrm{Pt}-\mathrm{Pt})$ are $1: 6: 143$. Intensities of $\nu(\mathrm{Pt}-\mathrm{Pt})$ are measured (not shown) against the $932-\mathrm{cm}^{-1}$ signal in solutions with NaClO_{4}. An intensity ratio of 0.38 occurs in a solution of $7.8 \times 10^{-5} \mathrm{M}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{I}_{2}\right]^{4-}$ vs. $0.8 \mathrm{M} \mathrm{NaClO}_{4}$. Relative intensities of $\nu(\mathrm{Pt}-\mathrm{Pt})$ with $4880-\AA$ laser excitation are 1.3:8.1:314.

Figure 4. Raman spectrum of $\sim 5-\mathrm{mM}$ aqueous solution of $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$, using $4067-\AA$ laser excitation.
in $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Cl}_{2}\right]^{4}$ is approximately 140 times, and the appearance of the two $\nu(\mathrm{Pt}-\mathrm{Pt})$ overtones characterize the resonance effect in the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{I}_{2}\right]^{4-}$ ion. These overtone frequencies (218 and $326 \mathrm{~cm}^{-1}$) indicate a reasonably harmonic mode for $\nu(\mathrm{Pt}-\mathrm{Pt})$.

The $\nu(\mathrm{Pt}-\mathrm{Pt})$ and $\nu(\mathrm{Pt}-\mathrm{X})$ stretches are now analyzed by normal coordinate calculations both with and without the bridging units. A comparison of these results allows a realization of the influence of the bridging units.
(a) Vibrational Analysis of the $\mathbf{X}-\mathbf{P t}-\mathbf{P t}-\mathbf{X}$ Unit. A simple analysis is offered to estimate the difference in $\mathrm{Pt}-\mathrm{Pt}$ bond strength between the binuclear $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{III})$ complexes. We find that a linear four-atom unit, $\mathrm{X}-\mathrm{Pt}-\mathrm{Pt}-\mathrm{X}$, is sufficient to reproduce $\nu(\mathrm{Pt}-\mathrm{Pt})$ and symmetric $\nu(\mathrm{Pt}-\mathrm{X})$ observed for the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ ions. An analytical solution has been obtained for $\nu(\mathrm{Pt}-\mathrm{Pt})$ and the symmetric $\nu(\mathrm{Pt}-\mathrm{X})$ in terms of three force constants, $K(\mathrm{Pt}-\mathrm{Pt})$, $K(\mathrm{Pt}-\mathrm{X})$, and $I(\mathrm{Pt}-\mathrm{Pt} ; \mathrm{Pt}-\mathrm{X})$. Details are given in the Appendix and frequencies are shown in Table II. Although a unique fit is not possible, a reasonable solution can be chosen with $K(\mathrm{Pt}-\mathrm{Pt})$ $=1.7 \mathrm{mdyn} / \AA, I(\mathrm{Pt}-\mathrm{Pt} ; \mathrm{Pt}-\mathrm{X}) \simeq 0.16 \mathrm{mdyn} / \AA$, and $K(\mathrm{Pt}-\mathrm{X})$ $=1.65,1.45$, and $1.2 \mathrm{mdyn} / \AA$ for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I , respectively. When the $K(\mathrm{Pt}-\mathrm{Pt})$ force constants are assumed to be linearly

Table II. Observed and Calculated Frequencies and Force Constants of Binuclear Platinum Complexes
A. Normal Modes with Pt-Pt and $\mathrm{Pt}-\mathrm{X}$ Contributions

compd	$\begin{aligned} & \text { sym- } \\ & \text { bol }^{b} \end{aligned}$	frequency, cm^{-1}		PED, ${ }^{\text {a }}$ \%		
		obsd	calcd ${ }^{\text {d }}$	Pt-X	$\mathrm{Pt}-\mathrm{Pt}$	${\text { bridge }{ }^{\text {c }}}^{\text {c }}$
$\overline{\left[\mathrm{Pt}_{2}\left(\text { pop) }{ }_{4} \mathrm{Cl}_{2}\right]^{4-}\right.}$	$\mathrm{A}_{1 \mathrm{~g}}$	304	304 (304)	78	4	1
		158	153 (157)	1	69	25
	$A_{2 \mathrm{u}}$	295	285 (304)	85		1
			154	1		85
$\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Br}_{2}\right]^{4-}$	$\mathrm{A}_{1 \mathrm{~g}}$	224	218 (222)	77	22	10
		134	132 (134)	17	51	18
	$\mathrm{A}_{2 \mathrm{u}}$	195	201 (206)	78		16
			143	17		67
$\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{I}_{2}\right]^{4-}$	$\mathrm{A}_{1 \mathrm{~g}}$	194	187 (195)	49	47	18
		110	107 (109)	45	26	9
	$\mathrm{A}_{2 \mathrm{u}}$	178	171 (161)	37		56
	A_{1}	118	121	60		22
$\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$		$489{ }^{e}$	488^{e}	93^{e}	1	1
		172	177	48	35	34
		156	159	0	24	57
		115	116	57	12	16
$\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$	$A_{1 g}$	116	115 (116)		38	58
	$A_{2} \mathrm{u}$		162			89

B. Additional Modes for the $A_{1 g}$ and $A_{2 u}$ Symmetries of the $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{X}_{2}\right]^{4-}$ Complexes $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I$)$ and $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$

sym- bol	$\begin{aligned} & {\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}} \\ & \quad \text { calcd, } \mathrm{cm}^{-1} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}} \\ & \quad \text { calcd, } \mathrm{cm}^{-1} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4^{-}}\right.} \\ & \left.\mathrm{CH}_{3} \mathrm{I}\right]^{4-} \\ & \text { calcd, } \mathrm{cm}^{-1} \end{aligned}$	assignments
$\mathrm{A}_{1 \mathrm{~g}}$	696	758	719	$\mathrm{P}-\mathrm{O}$ stretch Pt-P stretch ring bending $\mathrm{P}-\mathrm{O}$ stretch $\mathrm{Pt}-\mathrm{P}$ stretch
	403	385	411	
	292	294	295	
$\mathrm{A}_{2 \mathrm{u}}$	963	923	958	
	372	372	376	
C. Force Constants ${ }^{f}$ (mdyn/A)				
$\mathrm{Pt}(\mathrm{III})_{2}$			$\mathrm{Pt}(\mathrm{II})_{2}$ and $\mathrm{Pt}(\mathrm{IH})_{2}$	
	$\mathrm{K}(\mathrm{Pt}-\mathrm{Cl})$	1.54	$\mathrm{K}(\mathrm{P}-\mathrm{O})$	4.0
	$\mathrm{K}(\mathrm{Pt}-\mathrm{Br})$	1.36	$\mathrm{K}(\mathrm{Pt}-\mathrm{P})$	2.2
	K(Pt-I)	1.03	$\mathrm{K}(\mathrm{Pt}-\mathrm{Pt})$	0.3^{g}
	$\mathrm{K}(\mathrm{Pt}-\mathrm{C})$	2.03	$\mathrm{K}(\mathrm{Pt}-\mathrm{Pt})$	$1.2{ }^{h}$
	$\mathrm{I}(\mathrm{Pt}-\mathrm{Pt} ; \mathrm{Pt}-\mathrm{X})$	0.16	$\mathrm{H}(\mathrm{Pt}-\mathrm{P}-\mathrm{O})$	0.39
	$1(\mathrm{P}-\mathrm{Pt}-\mathrm{P} ; \mathrm{Pt}-\mathrm{X})$	0.10	$\mathrm{H}(\mathrm{P}-\mathrm{O}-\mathrm{P})$	0.47
	$\mathrm{H}(\mathrm{C}-\mathrm{C}-\mathrm{H})$	0.425	$\mathrm{H}(\mathrm{P}-\mathrm{Pt}-\mathrm{P})$	0.28
	$\mathrm{H}(\mathrm{H}-\mathrm{C}-\mathrm{H})$	0.35		

[^2]related to the $\mathrm{Pt}-\mathrm{Pt}$ bond strengths, a comparison between binuclear $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{III})$ complexes can be accomplished. A single two-atom calculation for $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ reproduces $\nu(\mathrm{Pt}-\mathrm{Pt})$ $116 \mathrm{~cm}^{-1}$ and gives $K(\mathrm{Pt}-\mathrm{Pt})=0.77 \mathrm{mdyn} / \AA$ for this complex. Here $K(\mathrm{Pt}-\mathrm{Pt})$ corresponds to the sum of the restoring forces that arise from direct $\mathrm{Pt}-\mathrm{Pt}$ interaction and those which originate from the bridging ligands. Thus, $K(\mathrm{Pt}-\mathrm{Pt})$ does not directly correlate with the homometallic bond strengths. The bridging contributions are eliminated in $\Delta K(\mathrm{Pt}-\mathrm{Pt})$, the difference between $K(\mathrm{Pt}-\mathrm{Pt})$ for the binuclear $\mathrm{Pt}(\mathrm{III})$ and $\mathrm{Pt}(\mathrm{II})$ complexes. Since the same bridging ligands are compared and appear similar, as witnessed by the X-ray data and the IR spectra, their interaction may reasonably be assumed not to be markedly different. This analysis gives $\Delta K(\mathrm{Pt}-\mathrm{Pt})=0.93 \mathrm{mdyn} / \AA$ and indicates an increase of the $\mathrm{Pt}-\mathrm{Pt}$ bond strength in the binuclear $\mathrm{Pt}(\mathrm{III})$ complexes.
(b) Analysis Including the Bridge $A_{1 g}$ and $A_{2 u}$ Vibrations. The $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X}$ stretching frequencies are now analyzed with the bridging ligands included. By use of the atomic arrangement in Figure 1 with $\mathrm{Pt}-\mathrm{P}$ and $\mathrm{P}-\mathrm{O}$ distances of 2.35 and $1.61 \AA$, the $\mathrm{A}_{1 \mathrm{~g}}$ and $\mathrm{A}_{2 u}$ symmetry vibrations of $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$ and $\left[\mathrm{Pt}_{2^{-}}\right.$

Figure 5. Raman spectra of $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}(\text { pop })_{4}{ }^{13} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ in $\sim 2-\mathrm{mM}$ aqueous solutions are shown. Signals from trace amounts of $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{I}_{2}\right]^{4-},<5 \%$ as determined by ${ }^{31} \mathrm{P}$ NMR measurements, are also observed and indicated by astericks. Laser excitation is $5145 \AA$.

Figure 6. Force fields for $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}):(-)$ give regions for $0.1<I_{\mathrm{XX}^{\prime}}<0.4,(\cdots)$ give $I_{\mathrm{XX}^{\prime}}>0.4$, and $(--)$ give $I_{\mathrm{XX}^{\prime}}<0.1$. An alternative solution for $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{Cl}_{2}\right]^{4-}$ with $K_{\mathrm{PPPt}}=1.7 \mathrm{mdyn} / \AA$ gives $K_{\mathrm{PtCl}}=1.74 \mathrm{mdyn} / \AA$ and $I_{\mathrm{PtX}}=0.31 \mathrm{mdyn} / \AA$.
(pop) $\left.{ }_{4} \mathrm{X}_{2}\right]^{4-}$ complexes have been analyzed. A $\mathrm{Pt}(\mathrm{II})-\mathrm{Pt}(\mathrm{II})$ distance of $2.925 \AA$ and a $\mathrm{Pt}(\mathrm{III})-\mathrm{Pt}(\mathrm{III})$ distance of $2.695 \AA$ were employed in these calculations. ${ }^{16}$ The complexes $\left[\mathrm{Pt}_{2}-\right.$ (pop) $\left.{ }_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$ and $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}^{13} \mathrm{CH}_{3} \mathrm{I}\right]$ have been treated in the $C_{4 v}$ point group. As seen in Figure $5, \nu(\mathrm{Pt}-\mathrm{Pt})$ is $156 \mathrm{~cm}^{-1}$ for $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$, while $\nu(\mathrm{Pt}-\mathrm{C})$ is $489 \mathrm{~cm}^{-1}$ and shows a $14-\mathrm{cm}^{-1}$ downshift with a ${ }^{13} \mathrm{CH}_{3} \mathrm{I}$ isotope. The $170-\mathrm{cm}^{-1}$ shoulder, which corresponds to the IR signal at $172 \mathrm{~cm}^{-1}$, is assigned predominantly to the $\mathrm{Pt}-\mathrm{I}$ stretch. Diagonal force constants are employed with the $\mathrm{Pt}-\mathrm{P}, \mathrm{P}-\mathrm{O}, \mathrm{Pt}-\mathrm{X}, \mathrm{Pt}-\mathrm{Pt}, \mathrm{Pt}-\mathrm{P}-\mathrm{O}, \mathrm{P}-\mathrm{O}-\mathrm{P}$, and $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ coordinates, along with ($\mathrm{Pt}-\mathrm{Pt} ; \mathrm{Pt}-\mathrm{X}$) and ($\mathrm{P}-\mathrm{Pt}-\mathrm{P} ; \mathrm{Pt}-\mathrm{X}$) interaction constants. While the force constants involved with the bridging atoms are not varied among the complexes, the $K(\mathrm{Pt}-\mathrm{Pt})$ constants are differentiated for the $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{III})$ compounds. By adjusting the $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X}$ force constants, a least-squares fit to the observed $19 \mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X}$ frequencies has been successfully accomplished.

The P-O stretches do not significantly couple with the lowfrequency modes. The $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ bending and, to a lesser extent, the $\mathrm{Pt}-\mathrm{P}-\mathrm{O}$ bending coordinates, contribute and are allowed to vary over a $0.05-0.6$ range between each cycle of the refinement procedure. A $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ bending vibration of $\mathrm{A}_{2 u}$ symmetry is consistently found below $200 \mathrm{~cm}^{-1}$ and is assigned to the 178 and $172-\mathrm{cm}^{-1}$ signals observed in the IR spectra of $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{I}_{2}\right]^{4-}$ and $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{CH}_{3} \mathrm{I}_{2}\right]^{4-}$. The force field refinement is repeated to include these signals and the results with $K(\mathbf{P t}-\mathrm{Pt})=1.2 \mathrm{mdyn} / \AA$ and $K(\mathrm{Pt}-\mathrm{X})=1.54,1.36$, and $1.03 \mathrm{mdyn} / \AA$, respectively, are shown in Table II. Assignments are made by using the potential energy distributions as given. Additional frequencies with $\mathrm{A}_{1 \mathrm{~g}}$
symmetry are calculated at 758,385 , and $294 \mathrm{~cm}^{-1}$ and are assigned to the $\mathrm{P}-\mathrm{O}$ stretch and $\mathrm{Pt}-\mathrm{P}$ stretch and ring bend, respectively. Frequencies with $A_{2 u}$ symmetry are calculated at 923 and $372 \mathrm{~cm}^{-1}$ and are assigned to the $\mathrm{P}-\mathrm{O}$ stretch and the $\mathrm{Pt}-\mathrm{P}$ stretch. These frequencies do not significantly vary among the complexes. A value $K(\mathrm{Pt}-\mathrm{Pt})=0.3 \mathrm{mdyn} / \AA$ reproduces the observed Raman frequency of $116 \mathrm{~cm}^{-1}$ for $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ and a value of $\Delta K(\mathrm{Pt}-\mathrm{Pt})=0.90 \mathrm{mdyn} / \AA$ between the binuclear $\mathrm{Pt}(\mathrm{III})$ and $\mathrm{Pt}(\mathrm{II})$ complexes in good agreement with the four-atom calculation. Metal-metal force constants that typically range between $1.0-1.3 \mathrm{mdyn} / \AA^{20}$ have bond energies of approximately $40 \mathrm{kcal} / \mathrm{mol}$, and those in the range $0.1-0.3 \mathrm{mdyn} / \AA$ have bond energies of $10-15 \mathrm{kcal} / \mathrm{mol}$. Our results suggest that a partial single bond be assigned to $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right]^{4-}$ while a strong single bond characterizes the binuclear platinum(III) complexes. Consequently, while the analysis does not disagree with the simple MO description ${ }^{4}$ for d^{7} and d^{8} binuclear platinum complexes there is not sufficient data to accurately determine the partial bond order of the $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$ ion. The calculation, however, emphasizes that the observation of $\nu(\mathbf{M}-\mathbf{M})$ does not automatically demand a metal-metal bond for structures of this kind.

The frequency lowerings of $\nu(\mathrm{Pt}-\mathrm{Pt})$ in the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ complexes are attributed to kinematic coupling between the $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X}$ stretching motions as indicated from the potential energy distribution in Table II. Contributions of $\mathrm{Pt}-\mathrm{X}$ in $\nu(\mathrm{Pt}-\mathrm{Pt})$ and $\mathrm{Pt}-\mathrm{Pt}$ in $\nu(\mathrm{Pt}-\mathrm{X})$, which increase with $\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$, cause changes in their normal modes. When mixing is small, as in $\left[\mathrm{Pt}_{2}-\right.$ (pop) $\left.{ }_{4} \mathrm{Cl}_{2}\right]^{4-}$, the normal modes correspond to the $\mathrm{Pt}-\mathrm{Pt}$ stretch (i.e., $\mathrm{X} \leftarrow \mathrm{Pt}-\mathrm{Pt} \rightarrow \mathrm{X}$) and $\mathrm{Pt}-\mathrm{Cl}$ stretch (i.e., $\leftarrow \mathrm{X}-\mathrm{Pt} \rightarrow \leftarrow$ $\mathrm{Pt}-\mathrm{X} \rightarrow$); however, an in-phase and out-of-phase combination of these coordinates are calculated for $\nu(\mathrm{Pt}-\mathrm{Pt})$ and $\nu(\mathrm{Pt}-\mathrm{Br})$ or $\nu(\mathrm{Pt}-\mathrm{I})$, respectively. Since resonance Raman transitions are intensified for normal modes that mimic distortions of the contributing excited electronic state, ${ }^{21}$ the relative intensities of ν -$(\mathrm{Pt}-\mathrm{Pt})$ and $\nu(\mathrm{Pt}-\mathrm{X})$ in these complexes are predicted to vary. As seen in Figure 2 the intensity of $\nu(\mathbf{P t}-\mathrm{Pt})$ dramatically increases relative to $\nu(\mathrm{Pt}-\mathrm{X})$ with $\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$. When mixing is small both normal modes produce a similar distortion pattern (namely, a lengthening of $\mathrm{Pt}-\mathrm{Pt}$ and shortening of $\mathrm{Pt}-\mathrm{X}$ or vice versa) and the intensities for $\nu(\mathrm{Pt}-\mathrm{Pt})$ and $\nu(\mathrm{Pt}-\mathrm{X})$ are expected to be comparable. When mixing is large $\nu(\mathrm{Pt}-\mathrm{Pt})$ distorts by a lengthening of $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X}$ distances while the distortion pattern of ν ($\mathrm{Pt}-\mathrm{X}$) remains the same. Thus, the intensity data, together with the normal coordinate analysis, suggest that the σ^{*} excited states have a geometry with longer $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X}$ bonds than the ground state. Raman excitation profiles would be useful to further characterize the excited states.

Concluding Remarks

The vibrations $\nu(\mathrm{Pt}-\mathrm{Pt})$ in the $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{X}_{2}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$ complexes are readily obtained by Raman spectral measurements. The $K(\mathrm{Pt}-\mathrm{Pt})$ force constants are a more sensitive indicator of the $\mathrm{Pt}-\mathrm{Pt}$ bond strengths than the frequencies since the latter are influenced by bridging and axial ligand interactions. We have treated the axial ligand interactions by using a simple four-atom model, $\mathrm{X}-\mathrm{Pt}-\mathrm{Pt}-\mathrm{X}$, and find an increase in $\mathrm{Pt}-\mathrm{Pt}$ bond strengths in binuclear $\mathrm{Pt}(\mathrm{III})$ as compared to $\mathrm{Pt}(\mathrm{II})$ complexes. We have found that the bridging ligand contributions to $\nu(\mathrm{Pt}-\mathrm{Pt})$ become increasingly significant in $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ and can account for most of the restoring forces in that vibration. These results reemphasize the danger of assigning metal-metal bonds from vibrational data without considering the influences of ligand interactions. ${ }^{22}$

It may be appropriate to consider the phosphorescent data ${ }^{8}$ of the $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ complex which show a $\nu(\mathrm{Pt}-\mathrm{Pt})$ of $139 \mathrm{~cm}^{-1}$ in the excited triplet state. Fordyce et al. ${ }^{8}$ estimated a $\mathrm{Pt}-\mathrm{Pt}$ distance in the range $2.49-2.65 \AA$ using a Franck-Condon analysis. An alternative approach is to apply the results of the four-atom

[^3]calculation with Badger's rule, ${ }^{23}$ incorporating the measured X-ray distances for the $\mathrm{Pt}-\mathrm{Pt}$ separations in $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Cl}_{2}\right]$. A $\mathrm{Pt}-\mathrm{Pt}$ separation of $2.81 \AA$ is calculated, corresponding to a 4% shrinkage of this bond in the excited triplet state. In light of the $\mathrm{Pt}-\mathrm{Pt}$ distance of 2.695 (1) \AA in $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}-\right.$ (pop) Cl_{2}], it appears that the Franck-Condon analysis may overestimate the low shrinkage. ${ }^{24}$

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research (Grant 11633AC3). We thank Professor Thomas G. Spiro for the use of the 171 Spectrophysics krypton ion laser. We thank Professor W. P. Schaefer for communication of his results prior to publication and Professor H. B. Gray for preprints of his work.

Appendix

The vibrational secular equation, given by

$$
\begin{equation*}
|\mathbf{G F}-\lambda|=0 \tag{A1}
\end{equation*}
$$

where \mathbf{G} and \mathbf{F} are the kinetic and potential energy matrices, and $\lambda=4 \pi^{2} c^{2} \nu^{2}$ (c is the velocity of light, and ν, expressed in cm^{-1} is the vibrational energy), is applied to the linear $\mathrm{X}-\mathrm{Pt}-\mathrm{Pt}-\mathrm{X}^{\prime}(\mathrm{X}$ and $\mathrm{X}^{\prime}=\mathrm{Cl}, \mathrm{Br}$, or I$)$ system. Symmetry coordinates are defined as follows:

$$
\begin{gathered}
S_{1}=r_{\mathrm{PtPt}} \\
S_{2}=\left(1 /(2)^{1 / 2}\right)\left(r_{\mathrm{PtX}}+r_{\mathrm{PtX}}\right) \\
S_{3}=\left(1 /(2)^{1 / 2}\right)\left(\mathrm{r}_{\mathrm{PtX}}+\mathrm{r}_{\mathrm{PtX}}\right)
\end{gathered}
$$

where r_{PtPt} is the PtPt stretching and r_{PtX} is the PtX stretching coordinates. The symmetrized \mathbf{G} and \mathbf{F} matrices

$$
\begin{gathered}
\mathrm{G}=\left\{\begin{array}{lll}
1 / \mu & -(2)^{1 / 2} / M_{\mathrm{Pt}} & 0 \\
-(2)^{1 / 2} / M_{\mathrm{Pt}} & 2 / M_{\mathrm{Pt}} & 0 \\
0 & 0 & 1 / \mu
\end{array}\right\} \\
\mathrm{F}=\left\{\begin{array}{ll}
K_{\mathrm{X}}+I_{\mathrm{XX}^{\prime}} & I_{\mathrm{PtX}} /(2)^{1 / 2} \\
I_{\mathrm{Pt}} /(2)^{1 / 2} & K_{\mathrm{Pt}} \\
0 & 0
\end{array} 0\right. \\
\end{gathered}
$$

separate the symmetric (2×2) asymmetric (1×1) blocks where $1 / \mu=1 / M_{\mathrm{X}}+1 / M_{\mathrm{Pt}}, K_{\mathrm{Pt}}$ and K_{X} are diagonal force constants with r_{PtPt} and r_{PtX}, while I_{PtX} and I_{XX} are interaction constants between r_{PtPt} and r_{PtX}, and r_{PtX} and r_{PtX}, respectively. The vibrations of $\mathrm{Hg}_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ have been analyzed ${ }^{25}$ with similar relationships.

Since there are more force constants than observed frequencies, unique solutions for the force constants are not possible. Assuming $I_{\mathrm{XX}^{\prime}}=0$ and taking the observed $\nu(\mathrm{Pt}-\mathrm{Pt})$ and $\nu(\mathrm{Pt}-\mathrm{X})$ Raman signals, solutions for $K_{\mathrm{Pt}}, K_{\mathrm{X}}$, and I_{PtX} can be obtained by rearranging eq 1 , using the symmetric G and F matrices. Plots of K_{Pt} vs. K_{X} for each $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{X}_{2}\right]^{4-}$ complex gives an account of reasonable solutions as shown in Figure 6 where $0.1<I_{\mathrm{PtX}}<0.4$ mdyn $/ \AA$. Solutions for $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{Br}_{2}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{I}_{2}\right]^{4-}$ are not attainable for I_{PtX} less than 0.11 and $0.15 \mathrm{mdyn} / \AA$. The ${ }^{195} \mathrm{Pt}$ NMR measurements indicate similar $\mathrm{Pt}(\mathrm{III})-\mathrm{Pt}(\mathrm{III})$ interactions

[^4]for these complexes and suggest equivalences in their $K_{\mathrm{P}_{t}}$ force constants. A narrow range, $1.69<K_{\mathrm{Pt}}<1.85 \mathrm{mdyn} / \AA$, of solutions is seen which allow for a common K_{Pt} force constant. The choice of K_{Pt} does not alter the conclusion (as provided in the text) of the relative binuclear $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{III})$ bond strengths. Plots of $K_{\mathrm{P}_{\mathrm{t}}}$ vs. I_{PtX} for these complexes (not shown) gives a near intercept ($\pm 0.02 \mathrm{mdyn} / \AA$) of the curves with $K_{\mathrm{Pt}}=1.7 \mathrm{mdyn} / \AA$ and $I_{\mathrm{PtX}}=0.16 \mathrm{mdyn} / \AA$ and provides a reasonable solution. Values for K_{PtX} of $1.65,1.45$, and $1.16 \mathrm{mdyn} / \AA$ are readily ob-
tained as shown in Figure 6. The calculated asymmetric $\nu(\mathrm{Pt}-\mathrm{X})$ are 304, 206, and $161 \mathrm{~cm}^{-1}$ as obtained by $\left(\left(K_{\mathrm{PtX}}\right)^{1 / 2} / \mu\right) / 2 \pi c$ and compare with the IR observations (295, 195, and $118 \mathrm{~cm}^{-1}$). The large difference in $\nu(\mathrm{Pt}-\mathrm{I})$ is attributed to mixing from an asymmetric ring mode and is discussed in the text.

Registry No. $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4}\right], 82135-51-1 ; \mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Cl}_{2}\right], 85335-$ $\left.49-5 ; \mathrm{K}_{4}\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4} \mathrm{Br}_{2}\right], 82135-55-5 ; \mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{I}_{2}\right], 85335-50-8 ; \mathrm{K}_{4}-$ $\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{CH}_{3} \mathrm{I}\right], 82135-52-2$.

Synthesis, Structure, and ${ }^{195} \mathrm{Pt}$ NMR Studies of Binuclear Complexes of cis-Diammineplatinum(II) with Bridging α-Pyridonate Ligands

L. Steven Hollis and Stephen J. Lippard* ${ }^{\dagger}$
Contribution from the Department of Chemistry, Columbia University, New York, New York 10027. Received November 15, 1982

Abstract

With ${ }^{195} \mathrm{Pt}$ NMR spectroscopy, several products formed in the reaction of $c i s$ - $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ with α-pyridone $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NHO}\right)$ have been identified in solution at pH 4.2 . These complexes, present in the aqueous solution from which the cis-diammineplatinum α-pyridone blue is ultimately obtained, include $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{OH})\right]_{2}{ }^{2+},\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{OH})\right]_{3}{ }^{3+}$, cis- $[\mathrm{Pt}$ - dimers $\left[\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right)_{2}\right]^{2+}$. Crystals of the last two complexes were obtained from the reaction by careful control of the pH . A rational synthesis of the head-to-tail isomer was achieved from dimerization of cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$. X-ray diffraction studies revealed the structure of the head-to-tail dimer, $\left[\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right.\right.$ $\left.\mathrm{O})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, to contain two α-pyridonate ligands bridging two cis-diammineplatinum(II) units with a Pt-Pt distance of 2.898 (1) \AA. The head-to-head platinum(II) isomer dimerizes with itself in the crystal lattice to form a tetramer, [$\left.\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right)_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{4}$, that is held together by bridging α-pyridonate ligands and by stacking and intercation hydrogen-bonding interactions. The structure of this yellow complex is strikingly similar to that of the α-pyridone blue except for longer Pt-Pt distances, 2.877 (1) and 3.129 (1) \AA vs. respective values of 2.775 (1) and 2.877 (1) \AA in the blue, owing to differences in metal-metal bond order for the two complexes.

During the past decade the scope of aqueous platinum(II) chemistry has undergone a significant expansion with the discovery and exploration of the antitumor properties of $c i s$-diamminedichloroplatinum(II), cis-DDP. ${ }^{1}$ The growth in this area is presently being maintained by the widespread success that cis-DDP is finding in the clinical treatment of human cancer. ${ }^{1 c}$ One of the directives of work in this area continues to be the development of an understanding of the mechanism of drug action. Since the antitumor activity of cis-DDP is thought to result from the inhibition of cellular replication, induced by the interaction of the drug with DNA, ${ }^{2}$ the study of the reactions of cis-DDP with nucleic acids and their constituents has become an active area of investigation. ${ }^{3}$

The chemistry of platinum-nucleotide interactions is a complex and diversified field of study. The reaction of cis-DDP or the aquated form of the complex, cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$, with free or substituted pyrimidine bases. leads to a variety of products ${ }^{3-15}$ that can be classified according to the number of platinum atoms contained in the product molecule. A multiformity of simple mononuclear and binuclear platinum complexes of free and substituted uracil, thymine, and cytosine has been isolated and studied by 'H NMR, vibrational spectroscopy, and X-ray crystallography ${ }^{5-15}$ In these compounds the platinum binds either,

[^5]in mononuclear complexes, to one of the heterocyclic nitrogens ($\mathrm{N} 1, \mathrm{~N} 3$) of the pyrimidine base or, in pyrimidine-bridged bi-
(1) (a) Rosenberg, B.; Van Camp, L. Cancer Res. 1970, 30, 1799. (b) Paoletti, C., Ed. Biochemie 1978, 60, 915-965. (c) Prestayko, A. E.; Crooke, S. T.; Carter, S. K., Eds. "Cisplatin, Status and New Developments"; Academic Press: New York, 1980. (d) Lippard, S. J. Science (Washington. D.C.) 1982, 2/8, 1075-1082.
(2) Roberts. J. J.; Thompson. A. J. Prog. Nucleic Acid Res. Mol. Biol. 1979, 22. 71.
(3) For a review see: Barton, J. K.; Lippard, S. J. In "Nucleic Acid-Metal Ion Interactions"; Spiro, T. G., Ed.; Wiley: New York, 1980; p 32.
(4) (a) Davidson, J. P.; Faber, P. J.; Fischer, R. G., Jr.: Mansy, S.; Peresie, H. J.; Rosenberg, B.; Van Cainp, L. Cancer Chemother. Rep. 1975, 59, 287. (b) Lippert, B. J. Clin. Hematol. Oncol. 1977, 7, 26.
(5) (a) Lippert, B.; Pfab, R.; Neugebauer, D. Inorg. Chim. Acta 1979, 37, L495. (b) Lippert, B. Ibid. 1981, 55, 5. (c) Lippert, B. Ibid. 1981, 56, L23. (d) Lippert, B.; Neugebauer, D. Ibid. 1981, 46, 171. (e) Lippert, B.; Schubert, U. Ibid. 1981, 56, 15. (f) Lippert, B.; Neugebauer, D. Inorg. Chem. 1982, 2l, 451. (g) Pfab, R.; Jandik. P.; Lippert, B. Inorg. Chim. Acta 1982, 66, 193.
(6) Lock, C. J. L.: Peresie, H. J.; Rosenberg, B.; Turner, G. J. Am. Chem. Soc. 1978, 100,3371
(7) Wu, S.-M.; Bau, R. Biochem. Biophys. Res. Commun. 1979, 88, 1435.
(8) (a) Lippert, B.; Lock, C. J. L.; Speranzini, R. A. Inorg. Chem. 1981, 20, 808. (b) Faggiani, R.; Lippert, B.; Lock, C. J. L. Ibid. 1982, 21, 3210.
(9) Faggiani, R.; Lippert, B.; Lock, C. J. L.; Pfab, R. Inorg. Chem. 1981, 20, 2381.
(10) Lippert, B.; Lock, C. J. L.; Speranzini, R. A. Inorg. Chem. 1981, 20, 335.
(11) Faggiani, R.; Lippert, B.; Lock, C. J. L. Inorg. Chem. 1980. 19, 295.

[^0]: (7) Sperline, R. P.; Dickson, M. K.; Roundhill, D. M. J. Chem. Soc., Chem. Commun. 1977, 62-63.
 (8) Fordyce, W. A.; Brummer, J. G.; Crosby, G. A. J. Am. Chem. Soc 1981, 103, 7061-7064.
 (9) Che, C. M.; Butler, L. G., Gray, H. B. J. Am. Chem. Soc. 1981, 103, 7796-7797.
 (10) Lewis, N. S.; Mann, K. R.; Gordon, J. G., II; Gray, H. B. J. Am. Chem. Soc. 1976, 98, 7461-7463.
 (11) Rice, S. F.; Gray, H. B. J. Am. Soc. 1981, J03, 1593-1595.
 (12) Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H. J. Am. Chem. Soc. 1981, 103, 1595-1596.
 (13) Dickson, M. K.; Fordyce, W. A.; Appel, D. M. Alexander, K.; Stein, P.; Roundhill, D. M. Inorg. Chem. 1982, 2l, 3857-3858.

[^1]: (14) Ebert, M.; Kawan, L.; Pelikanova, M. Collect. Czech. Chem. Commun. 1978, 43, 3317-3323 and references therein.
 (15) Palmer, W. G. J. Chem. Soc. 1961, 1552-1562. Steger, E.; Leukroth, G. Z. Anor. Allg. Chem. 1960, 303, 169-176. Muck, A.; Petri, F. Z. Chem. 1971, Il, 29-30. Etcheverry, S. B.; Baran, E. S. Z. Anorg. Allg. Chem. 1971, 457, 197-202.
 (16) An idealized model where all $\mathrm{Pt}-\mathrm{Pt}-\mathrm{P}$ angles are 90° and all bridging ligand distortion is accommodated by changes in the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle was assumed in the calculations of section 3 b, giving a 15° change in $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle between $\mathrm{Pt}(\mathrm{II})-\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{III})-\mathrm{Pt}(\mathrm{III})$ complexes. Actually the angle change is somewhat smaller $\left(\sim 8^{\circ}\right)$ and there is also some increase $\left.\sim 1-2^{\circ}\right)$ in the $\mathrm{Pt}-\mathrm{Pt}-\mathrm{P}$ angles above 90° for the complex $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{pop})_{4} \mathrm{Cl}_{2}\right]$ (Schaefer, W. P., personal communication).

[^2]: ${ }^{a}$ Diagonal potential energy distribution. ${ }^{b} D_{4 h}$ symmetry for $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ and $\left[\mathrm{Pt}_{2} \text { (pop) } \mathrm{X}_{2}\right]^{4-} ; \mathrm{C}_{4 v}$ symmetry for $\left[\mathrm{Pt}_{2} \text { (pop) } \mathrm{CH}_{3} \mathrm{I}\right]^{4-}$. ${ }^{c}$ The $\mathrm{Pt}-\mathrm{Pt}-\mathrm{P}, \mathrm{P}-\mathrm{O}-\mathrm{P}$, and $\mathrm{Pt}-\mathrm{P}-\mathrm{O}$ bending contributions. ${ }^{a}$ Calculated frequencies in parentheses were determined by using only the $\mathrm{X}-\mathrm{Pt}-\mathrm{Pt}-\mathrm{X}$ unit (see text) and Appendix. ${ }^{e} \mathrm{Pt}-\mathrm{CH}_{3}$ str; with $\left[\mathrm{Pt}_{2}(\text { pop })_{4}{ }^{13} \mathrm{CH}_{3} 1\right]^{4-}$ the $\mathrm{Pt}^{13} \mathrm{CH}_{3}$ str is 475 exptl and 476 calcd. ${ }^{f}$ See Appendix for four-atom calculation. ${ }^{g}$ For $\left[\mathrm{Pt}_{2}(\text { pop })_{4}\right]^{4-}$. ${ }^{h}$ For $\left[\mathrm{Pt}_{2}(\text { pop })_{4} \mathrm{X}_{2}\right]^{4-}$.

[^3]: (20) See, for example: Ware, M. J. In "Essays in Structural Chemistry"; Downs, A. J., Long, D. A., Staveley, L. A. K., Eds.; MacMillan: London, 1971.
 (21) Hirakawa, A. Y.; Tsuboi, M. Science (Washington, D.C.) 1975, I88, 359-361.

[^4]: (22) Shriver. D. F.; Cooper, C. D., III Adv. Infrared Raman Spectrosc. 1980, 6, 127-157.
 (23) Badger, R. M. J. Chem. Phys. 1935, 3, 710-714. The values $d_{i j}=$ $1.934 \AA$ and $c=0.75$ mdyn \AA^{2} were determined by solving two simultaneous equations of the form: $r_{i j}=(c / K)^{1 / 3}+d_{i j}$, where $r_{j j}$ and k are the atomic separations and force constants for the binuclear $\mathrm{Pt}(11)$ and $\mathrm{Pt}(111)$ complexes.
 (24) Since completion of this work we have learned of a spectroscopic study on $\left.\left[\mathrm{Pt}_{2} \text { (pop) }\right)_{4}\right]^{4-}$ which finds a $\mathrm{Pt}-\mathrm{Pt}$ stretching frequency in the ${ }^{3} \mathrm{~A}_{20}$ state of $155 \mathrm{~cm}^{-1}$. Using this value of $155 \mathrm{~cm}^{-1}$ rather than $139 \mathrm{~cm}^{-1}$ in our Badger's rule calculations results in a finding of $2.75 \AA$ for the excited-state $\mathrm{Pt}-\mathrm{Pt}$ separation. This distance is close to that of $2.71 \AA$ found by these authors (S. F. Rice and H. B. Gray) from a vibrational analysis of the electronic spectrum.
 (25) Durig, J. R.; Lau, K. K.; Nararajan, G.; Walker, M.; Bragin, J. J. Chem. Phys. 1969, 30, 2130-2139.

[^5]: ${ }^{\dagger}$ Address correspondence to this author at the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.

